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Outline
• The need to consider multi-level model approximation families

• Some background theory – dynamic systems and morphisms 

provide a mathematical basis

• Some sufficient conditions that enable exact approximation

• Approximate Morphisms to handle departures from enabling 

conditions

• Error propagation and example of sensitivity analysis

• Construction of multi-level model approximation families



The need to consider multi-level model approximation families

• Systems of Systems (SoS) may be modeled at different levels of spatial extent and 
resolution (municipal, county, state…)

• Models may be constructed at coarse abstraction levels that support faster 
simulation  - e.g., model checking – but not Pacman

• Models may be constructed at high fidelity that are purported to be closer to 
reality, but how well do we know the details

• How can we ensure that errors introduced in the aggregation/disaggregation 
processes lie within acceptable limits?

• Interoperation of models at different levels of resolution presupposes effective 
ways to develop and correlate the underlying abstractions

• An useful  methodology for  integrated family of approximation models would 
allow

• flexibility in calibration  and cross-calibration

• application to diverse experimental frames, i.e. properties



Implementation: Case Study:A Watershed behavior

Specialization for 
two abstraction 
WS models

Specialization for 
two abstraction 
Basin models

2Montain 
models



Implementation: Results 

On what basis should 
they agree?

=> Comparing simulated

and observed daily flows

for the one-year period

(365 days for the year

2009).

What if they disagree?

Results of simulation of 4 pruned and transformed compositions: Each figure presents a time series



Some background theory – dynamic systems and morphisms provide a 
mathematical basis

• Systems theory generalizes finite state and linear theory exact and approximate 
model approximation

• Framework for M&S provides needed concepts for approximate model construction, 
including model-simulator separation and  experimental frames

• Systems theory provides morphism concepts for exact model simplification

• M&S Framework enables System morphism concepts to be extended to handle 
approximate model construction and error propagation analysis



Stratification of System Knowledge/Specification Levels



Associated Structure/Behavior Preserving Morphisms



Modeling and Simulation Framework 

Source 
System Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

behavior database

BASE Model

LUMPED Model

Exact and Approximate 
Morphisms

Abstraction is defined as valid model simplification and is relative to one or more experimental frames

PLOS Computational Biology: Minimum Information About a Simulation Experiment (MIASE)



Experimental Frames Determine Validity of Abstraction 

= BASE

= LUMPED

mapping

state

state
Same output

i.e. mapping 

Rrefines the 

Output partition



Multi-step morphism allows micro states and input/output 
encoding/decoding



Some sufficient conditions that enable exact abstraction

• Finite state theory provides algorithms employing congruence 
relations, state set partitions, and output refinement

• Linear systems theory developed model realization theory that 
was shown to be essentially equivalent to finite state theory

• Probabilistic automata provided somewhat different  lumpability 
criteria 

• These concepts were generalized in dynamic system theory 
within the M&S framework



State system homomorphism: exact and approximate

Homomorphism concepts borrowed from finite state automata

require base and lumped model states to remain in state correspondence over time 

Exact homomorphism: 
zero error

= BASE

= LUMPED

mapping

state

state

statestate

transition
state

mapping

state

Transition introduced 
error

transition

transition

mapping

error after two
transitions

state

state

state

Approximate: have 
to consider error 
accumulation over 
time



state mapping

parameter

mapping

parameters

parameters

state

state

Parameter Morphism: a homomorphism that maps the

parameter space of the base model into that of the lumped

model

BASE Model

LUMPED Model

Parameter Morphisms retain valid simplification und er changes in parameter values
This  supports cross-calibration in multi-level, mu lti-resolution families



System Theory Generalization of Exact Aggregation Conditions

a)

b) c)

component
aggregation

coupling
aggregation

base
block

lumped
block

a
b

c a c
d

Theorem: Sufficient conditions for Aggregation

Let there be partition on the components of a base model for which 1) blocks have 

homogeneous components, 2)  the coupling indifference conditions hold for all pairs of blocks 

and 3) the base model output is computable from block model census counts. 

Then a lumped model exists for which there is an exact homomorphism based on an census

count aggregation.

The Aggregation theorem states that  

not only must there be homogeneity 

within blocks but also the inter-block 

element-to-element interactions must  

satisfy coupling indifference conditions



Example: Lumpability criteria applied to linear discrete time systems

• The base model transition function is expressed as a matrix of coefficients

• The lumped model transition function is of lower order with coefficients 
derived from aggregation of base coefficients

• The state mapping aggregates base states to lumped states

• Lumpability criteria provide sufficient conditions for preservation of the 
state mapping over time

1 11 21 31 41 1

2 12 22 32 42 2
*

3 13 23 33 43 3

4 14 24 34 44 4

x a a a a x

x a a a a x

x a a a a x

x a a a a x
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     ′
     =

′     
     ′     

1 11 21 1
*

2 12 22 2

y b b y

y b b y
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1 0.5 * ( 1 2)

2 0.5 * ( 3 4)

y x x

y x x

= +
= +

0,5( 31 41 42 44)a a a a+ + +

Lumped  model

Base model

Parameter 

morphism

State mapping

31 41

32 42

a a

a a

=
=

Lumpability

criteria



• Approximate system morphisms loosen up the strict requirements of exact 

system morphisms 

• Propagation of error that results is characterized and related to the 

dynamics of the resulting lumped model

• The error propagation can grow or attenuate with time depending on 

lumped model stability characteristics

Approximate Morphisms handle departures from 

enabling conditions

• We can 

– analyze a base model and a block partition construction for  error departure 

from exact morphism conditions

– simulate  and compare base and lumped model behavior  for sensitivity to 

error propagation



Example of error propagation analysis: Approximate Lumpability

0 0

0 0 0 0

0,5 0,5 0 0 0

0,5 0,5 0 0
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error behavior

0.8 0.0
01

-0.002 error decreases over time

0.8 0.0
1

-0.02 decreases

0.8 0.1 -0.2 decreases 

0.8 0.0 0.0 constant

1 0.1 0.4 error increases over time

1.2 0.1 7.0 increases explosively
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( )

( 1 2 1) ( 3 4 2)

error t

x x y x x y

=

+ − + + −
Departure from 

lumpability = e

Theory predicts that the gain, g determines 

error propagation characteristics:

• Error  decreases over time when  g<1

Otherwise it increases

• The closer to lumpability, the faster the  

error disappears



Application to  evolving model approximation families

• Approximate model construction methodology supports integrated 

families of approximate models 

• Approximate models are indexed by the experimental frames in which 

their conditions  approximately hold – error propagation conditions in 

these frames can be estimated

• As field data is ingested for V&V, calibration of any one model propagates 

information to others from which it is derived and which are further 

approximations of it, thus maintaining a coherent model family

integrated families of approximation models support  1) estimating trade-offs in accuracy and 

execution time and 2) choice of  approximations meeting analysis needs and time constraints.



Preservation/Predictive Ability (“predictivity”)  of models

• Preservation: Does the lumped model preserve a given property of the base 
model?

• Predictivity: Does a given property of the lumped model imply that the 
property holds for the base model?

• Example:  Recurrent (cyclic) vs Absorbing (acyclic) behavior

Base

model

Lumped

model 

morphism



All base models

Systems 

Not Having P

Systems 

Having P

All lumped models

Models

Having P

Models

Not Having P

Lyndon’s theorem for automata: 

S has positive P  implies M has P

M has negative P  implies S has P

Deceptive case: 

Possible but may be 

rare

:

• Conditions for inheritance of stability properties for continuous
systems (Foo)

• Downward preservation of p implies upward preservation of –p

• Properties of interest seem not to be expressible in negative form.,

• Sierocki applied Lyndon's theorem to finite automata.

• Reachability, connectedness, and reversibility and are positive by
direct statement.

• Sierocki shows that upward inheritance of positive properties holds for
the usual homomorphism of automata.

• Moreover, downward inheritance holds for negative properties.

• Saadawi and Wainer showed that some properties flow upward from 

safety timed automata models verified in uppaal to real time advance 

devs models under a strong form of bi-simulation similar to 

isomorphism.

a positive property is one expressible in first 
order logic without use of negation. 

a negative property is one that requires 
negation to express it. 



Preservation/Predictive Ability (“predictivity”)  of Markov models from 
analysis of their underlying Directed Graphs(DG)

* Theorem If C is a directed cycle, then G hom→ C iff G contains only cycles of 
length divisible by the length of C

Pavol Hell, Huishan Zhou, Xuding Zhu Homomorphisms to oriented cycles. 2003 

• Sequences (DAG) can map to DAGs and to Cycles (with low probability) 

• Cycles (DCG) can map to only DCGs  - a cycle either maps to a single

state (if it is all in an equivalence class) or to a proper cycle*

So 

• Lumped Model cycles can only come from Base Model cycles

• Lumped Model sequences come from sequences with high probability

• So (Property Preservation)

• Base Model is recurrent implies Lumped model is recurrent

• Base Model is absorbing implies Lumped model is probably absorbing 

• And (Property Predictivity)

• Lumped Model is recurrent implies Base model is probably recurrent

• Lumped Model is absorbing implies Base model is absorbing

Connected Acyclic DG

Digraph 

homomorphisms

Strongly 

Connected DG



DEVS makes it easy to cross deterministic /stochastic lines

DEVS 

Deterministic

DEVS 

(FDDEVS)

Stochastic

DEVS 

(FPDEVS, Markov)

Deterministic 

model

Markov

model P = 2/3

Count the number 
of transition from

First block to Second

Probability 
assigned to

transition

Markov

model 
P = 2/3

Extends to 
Lumping of 

Markov Models

morphism



Generated 10,000 pairs of randomized stochastic 
matrices and state partitions

• The square matrices were sampled from a uniform distribution of sizes, m in the 
range [4, 34] with partitions sampled conditionally on m with uniform 
distribution in the range [2,m-1]. 

• Matrices were generated as sequences of m*m entries sampled with Binomial 
distribution with probability increased in 10 steps from .1 to 1 each with 1000 
trials (with normalization to assure row summation to unity).

• Partitions were generated by partitioning the integer m,  selecting one randomly, 
and randomly permuting the order of the partition numbers 

• For each (matrix, partition) pair, the lumped matrix was generated using 
Equation 1 (Definition 2) so that the original and lumped chains are called the 
base, lumped model pair.



Frequencies of Base/Lumped Cycle Numbers using Cycle 
Detection in Jama package

0 0 38

0 1 147

1 0 28

1 1                9569

1 2 2

2 0 4

2 1 180

2 2 10

3 1 19

3 2 1

4 1 2

LumpedBase Number 



Lumping usually reduces the number of transitions:
Avg Outdegree of Lumped is usually less than Base
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However, Predictive uncertainty is increased by Lumping: 
Trajectory Entropy of Lumped usually larger than that of Base
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Lumpability example taken from Wikipedia

1        2        3         4

1              2

Partition maps
States 3 ,4 into 

state 2Partition maps
States 1,3 into 

state 1

Morphism maps
along row 

into their sum 

Note 
these sums

are equal

Sums along rows 
= 1

Prob of transition 
Of state 1 to state 2

This morphism is preserved under

Single step transitions

the lumped model has the same

long run behavior as the base 



But what about this matrix?
It still is stochastic but does not satisfy lumpability

1        2        3         4

1              2

- eps+ eps

However it is close 
To the original so shouldn’t 
Its behavior also be close?

- eps/2+ eps/2



Lumpability metric: LumpSTD measures how varied the 
partial sums are – the more varied the less lumpable

1        2        3         4

1              2

Consider the sums as
samples of a rv
Compute the sample mean and std
The mapped value = sample mean
LumpSTD be the std.



Jensen-Shannon Metric For Probability 
Distributions

JSDist =  square root (JSD) is  a distance metric

Approximation Error = 

JSDist (Lumped Equilibrium Distribution,

Mapped (Base Equilibrium Distribution))



Background values of JSDist metric
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than random



Error propagation is self-damping: general theory 
says Contraction mapping implies error decreases

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

0 10 20 30 40 50 60 70 80 90 100

Contraction MaxRatio

= max Do/Di in one transition neighborhood

Di

Do

Contraction ratio 
is always <1

Single Step
transition



Approximate Morphisms: What’s the probability of 
finding a reasonably good approximate lumpable
partition when sampling at random?

Base

Lumped

3 % of space is
Near exact 

Lumping



Conclusion

• Properties of interest may not be preserved in the abstraction process 

• Moreover lumped model properties may be deceptive – they may not 
carry over to the base model

• Measures of model quality may not behave as expected under aggregation

• Exact morphisms are very rare 

• But approximate morphisms may be much more common and 
discoverable by modelers – humans and computers


