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Introduction

Discrete events already used for the modeling and simulation
of neural nets (Brette et al. , 2007).

With DEVS: Original neuron models (Zeigler, 2005) or to
abstract neural nets (Zeigler, 1975).

But no DEVS neural nets dealing with stochasticity such as
Markov chains or random graphs.
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Goals

Markov model components as DEVS pseudorandom systems

Markov matrix models to predict the speed-up of parallel
simulations

Application to symmetric multiprocessor (SMP)

Markov matrix model of the P-DEVS protocol
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Neuron dynamic model

Usual leaky integrate-and-fire model, at time t ∈ N, the membrane

potential s(t) ∈ R of a neuron consists of:

s(t) =

{

rs(t − 1) + Σm
j=1wjxj (t) if s(t − 1) < τ

0 otherwise

with r ∈ [0, 1] the remaining coefficient, wj the synaptic weight

from neuron j.
Spike emission x(t) depends on threshold τ ∈ R

+:

x(t) =

{

1 if s(t − 1) ≥ τ

0 otherwise
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Neuron graph model

I B O

p1

p2

p0
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Parallel simulation

Simulation parameters

probabilities: p1 = p2 = 0.9, p3 = 0.5, p0: variations,
all high activity neurons: a = r = 1, each threshold
τi ∼ N (m, σ2), with m = 20 and σ = 1
Generator period: 1

No internal couplings inside input and output layers

Parallel implementation

Multithreaded SMP machine (80 physical cores, 160 logical
ones)

Each coordinator with own parallelized scheduler
DEVSJava extension
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Parallel simulation

Variations of:

Number of threads (1,5,10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160)
probability p0 (internal coupling of middle layer)
Number of neurons in each layer (1, 5, 10, 100, 500)

Model each coupled model execution time reduction
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Preliminary results

Input layer (simple stochastic generators)

Rk: Each result is replicated 20 times with good confidence interval
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Preliminary results

Middle layer (send/receive neurons with int. couplings)

gain = proba*NbNeurons
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Preliminary results

Output layer (simple receiving neurons)
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Sum-up

All layers
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Conclusion

Simulations with more overhead are running

First model of random graph based coupled models run in
parallel

Next steps [test composition of Markov models (of each
layer)]:

Collect new results and achieve better models
Account for negative weights percentage for the gain
(proportional)
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