1/13

イロト イロト イヨト イヨト 三日

Modeling organization of spiking neural nets in DEVS for high performance parallel simulation

Bernard P. Zeigler¹ & Alexandre Muzy²

¹RTSync, University of Arizona – USA ²I3S CNRS/UNS, Sophia-Antipolis – France

April 14, 2016

Introduction

- Discrete events already used for the modeling and simulation of neural nets (Brette *et al.*, 2007).
- With DEVS: Original neuron models (Zeigler, 2005) or to abstract neural nets (Zeigler, 1975).
- *But* no DEVS neural nets dealing with stochasticity such as Markov chains or random graphs.

Introduction

- Discrete events already used for the modeling and simulation of neural nets (Brette *et al.*, 2007).
- With DEVS: Original neuron models (Zeigler, 2005) or to abstract neural nets (Zeigler, 1975).
- *But* no DEVS neural nets dealing with stochasticity such as Markov chains or random graphs.

Introduction

- Discrete events already used for the modeling and simulation of neural nets (Brette *et al.*, 2007).
- With DEVS: Original neuron models (Zeigler, 2005) or to abstract neural nets (Zeigler, 1975).
- *But* no DEVS neural nets dealing with stochasticity such as Markov chains or random graphs.

- Markov model components as DEVS pseudorandom systems
- Markov matrix models to predict the speed-up of parallel simulations
- Application to symmetric multiprocessor (SMP)
- Markov matrix model of the P-DEVS protocol

- Markov model components as DEVS pseudorandom systems
- Markov matrix models to predict the speed-up of parallel simulations
- Application to symmetric multiprocessor (SMP)
- Markov matrix model of the P-DEVS protocol

- Markov model components as DEVS pseudorandom systems
- Markov matrix models to predict the speed-up of parallel simulations
- Application to symmetric multiprocessor (SMP)
- Markov matrix model of the P-DEVS protocol

- Markov model components as DEVS pseudorandom systems
- Markov matrix models to predict the speed-up of parallel simulations
- Application to symmetric multiprocessor (SMP)
- Markov matrix model of the P-DEVS protocol

Neuron dynamic model

Usual leaky integrate-and-fire model, at time $t \in \mathbb{N}$, the membrane potential $s(t) \in \mathbb{R}$ of a neuron consists of:

$$s(t) = \left\{ egin{array}{c} rs(t-1) + \Sigma_{j=1}^m w_j x_j(t) & \textit{if } s(t-1) < au \ 0 & \textit{otherwise} \end{array}
ight.$$

with $r \in [0, 1]$ the remaining coefficient, w_j the synaptic weight from neuron *j*.

Spike emission x(t) depends on threshold $\tau \in \mathbb{R}^+$:

$$\mathbf{x}(t) = \left\{egin{array}{cc} 1 & \textit{if } s(t-1) \geq au \ & 0 & \textit{otherwise} \end{array}
ight.$$

Neuron graph model

- probabilities: $p_1 = p_2 = 0.9$, $p_3 = 0.5$, p_0 : variations,
- all high activity neurons: a = r = 1, each threshold $\tau_i \sim \mathcal{N}(m, \sigma^2)$, with m = 20 and $\sigma = 1$
- Generator period: 1
- No internal couplings inside input and output layers
- Parallel implementation
- Multithreaded SMP machine (80 physical cores, 160 logical ones)
 - Each coordinator with own parallelized scheduler
 - DEVSJava extension

- probabilities: $p_1 = p_2 = 0.9$, $p_3 = 0.5$, p_0 : variations,
- all high activity neurons: a = r = 1, each threshold $\tau_i \sim \mathcal{N}(m, \sigma^2)$, with m = 20 and $\sigma = 1$
- Generator period: 1
- No internal couplings inside input and output layers
- Parallel implementation
- Multithreaded SMP machine (80 physical cores, 160 logical ones)
 - Each coordinator with own parallelized scheduler
 - DEVSJava extension

- probabilities: $p_1 = p_2 = 0.9$, $p_3 = 0.5$, p_0 : variations,
- all high activity neurons: a = r = 1, each threshold $\tau_i \sim \mathcal{N}(m, \sigma^2)$, with m = 20 and $\sigma = 1$
- Generator period: 1
- No internal couplings inside input and output layers
- Parallel implementation
- Multithreaded SMP machine (80 physical cores, 160 logical ones)
 - Each coordinator with own parallelized scheduler
 - DEVSJava extension

- probabilities: $p_1 = p_2 = 0.9$, $p_3 = 0.5$, p_0 : variations,
- all high activity neurons: a = r = 1, each threshold $\tau_i \sim \mathcal{N}(m, \sigma^2)$, with m = 20 and $\sigma = 1$
- Generator period: 1
- No internal couplings inside input and output layers
- Parallel implementation
- Multithreaded SMP machine (80 physical cores, 160 logical ones)
 - Each coordinator with own parallelized scheduler
 - DEVSJava extension

- probabilities: $p_1 = p_2 = 0.9$, $p_3 = 0.5$, p_0 : variations,
- all high activity neurons: a = r = 1, each threshold τ_i ~ N(m, σ²), with m = 20 and σ = 1
- Generator period: 1
- No internal couplings inside input and output layers
- Parallel implementation
- Multithreaded SMP machine (80 physical cores, 160 logical ones)
 - Each coordinator with own parallelized scheduler
 - DEVSJava extension

• Simulation parameters

- probabilities: $p_1 = p_2 = 0.9$, $p_3 = 0.5$, p_0 : variations,
- all high activity neurons: a = r = 1, each threshold τ_i ~ N(m, σ²), with m = 20 and σ = 1
- Generator period: 1
- No internal couplings inside input and output layers

Parallel implementation

- Multithreaded SMP machine (80 physical cores, 160 logical ones)
 - Each coordinator with own parallelized scheduler
 - DEVSJava extension

- probabilities: $p_1 = p_2 = 0.9$, $p_3 = 0.5$, p_0 : variations,
- all high activity neurons: a = r = 1, each threshold $\tau_i \sim \mathcal{N}(m, \sigma^2)$, with m = 20 and $\sigma = 1$
- Generator period: 1
- No internal couplings inside input and output layers
- Parallel implementation
- Multithreaded SMP machine (80 physical cores, 160 logical ones)
 - Each coordinator with own parallelized scheduler
 - DEVSJava extension

- probabilities: $p_1 = p_2 = 0.9$, $p_3 = 0.5$, p_0 : variations,
- all high activity neurons: a = r = 1, each threshold $\tau_i \sim \mathcal{N}(m, \sigma^2)$, with m = 20 and $\sigma = 1$
- Generator period: 1
- No internal couplings inside input and output layers
- Parallel implementation
- Multithreaded SMP machine (80 physical cores, 160 logical ones)
 - Each coordinator with own parallelized scheduler
 - DEVSJava extension

- probabilities: $p_1 = p_2 = 0.9$, $p_3 = 0.5$, p_0 : variations,
- all high activity neurons: a = r = 1, each threshold $\tau_i \sim \mathcal{N}(m, \sigma^2)$, with m = 20 and $\sigma = 1$
- Generator period: 1
- No internal couplings inside input and output layers
- Parallel implementation
- Multithreaded SMP machine (80 physical cores, 160 logical ones)
 - Each coordinator with own parallelized scheduler
 - DEVSJava extension

• Variations of:

- Number of threads (1,5,10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160)
- probability *p*₀ (internal coupling of middle layer)
- Number of neurons in each layer (1, 5, 10, 100, 500)
- Model each coupled model execution time reduction

- Variations of:
 - Number of threads (1,5,10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160)
 - probability *p*₀ (internal coupling of middle layer)
 - Number of neurons in each layer (1, 5, 10, 100, 500)
- Model each coupled model execution time reduction

- Variations of:
 - Number of threads (1,5,10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160)
 - probability p₀ (internal coupling of middle layer)
 - Number of neurons in each layer (1, 5, 10, 100, 500)
- Model each coupled model execution time reduction

- Variations of:
 - Number of threads (1,5,10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160)
 - probability p₀ (internal coupling of middle layer)
 - Number of neurons in each layer (1, 5, 10, 100, 500)
- Model each coupled model execution time reduction

- Variations of:
 - Number of threads (1,5,10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160)
 - probability p₀ (internal coupling of middle layer)
 - Number of neurons in each layer (1, 5, 10, 100, 500)
- Model each coupled model execution time reduction

Preliminary results

Input layer (simple stochastic generators)

		,		
Nb of neurons in middle layer	Elapsed time one thread	Best time	Speed-up ratio	
1	0,520717	0,420232	1,2391179158	
5	0,495051	0,495051	1	
10	0,52735	0,52735	1	
100	0,661288	0,661288	1	
500	5,65755	5,65755	1	

Rk: Each result is replicated 20 times with good confidence interval

Preliminary results

- Middle layer (send/receive neurons with int. couplings)
- gain = proba*NbNeurons

Proba	0,1				
Nb of neurons in middle layer	Elapsed time one thread	Best time	Speed-up ratio	proba*NbNeurons	
1	-	-	-	0,1	
5	0,369873	0,369873	1	0,5	
10	0,326683	0,326683	1	1	
100	1,77223	1,352	1,3108210059	10	
500	44,4226	25,8828	1,7162980821	50	

Proba	0,9			
Nb of neurons in middle layer	Elapsed time one thread	Best time	Speed-up ratio	proba*NbNeurons
1	-	-	-	0,9
5	0,400321	0,400321	1	4,5
10	0,403413	0,403413	1	9
100	2,7502	1,58617	1,7338620703	90
500	75,207	35,8044	2,1004960284	450

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 画|| のへの

Preliminary results

Output layer (simple receiving neurons)

Nb of neurons in middle layer	Elapsed time one thread	Best time	Speed-up ratio	
1	-	-	-	
5	0,089175	0,089175	1	
10	0,122071	0,122071	1	
100	1,25386	0,860517	1,4571007894	
500	32,2965	13,4208	2,4064511803	

Sum-up

All layers

P0=0,1				P0=0,9		
Neurons	Input	middle	output	input	middle	output
5	0,50	0,37	0,89	0,45	0,40	0,16
10	0,53	0,33	0,12	0,49	0,40	0,18
100	0,66	1,77	1,25	0,52	2,75	1,31
500	5,66	44,42	32,30	6,12	75,21	32,44

Conclusion

- Simulations with more overhead are running
- First model of random graph based coupled models run in parallel
- Next steps [test composition of Markov models (of each layer)]:
 - Collect new results and achieve better models
 - Account for negative weights percentage for the gain (proportional)

References

- Brette, Romain, Rudolph, Michelle, Carnevale, Ted, Hines, Michael, Beeman, David, Bower, JamesM., Diesmann, Markus, Morrison, Abigail, Goodman, PhilipH., Harris, Frederick C., Jr., Zirpe, Milind, Natschlager, Thomas, Pecevski, Dejan, Ermentrout, Bard, Djurfeldt, Mikael, Lansner, Anders, Rochel, Olivier, Vieville, Thierry, Muller, Eilif, Davison, Andrew P., El Boustani, Sami, & Destexhe, Alain. 2007. Simulation of networks of spiking neurons: A review of tools and strategies. Journal of computational neuroscience, 23(3), 349–398.
- Zeigler, Bernard P. 1975. Statistical simplification of neural nets. International journal of man-machine studies, **7**(3), 371–393.
- Zeigler, B.P. 2005. Discrete event abstraction: an emerging paradigm for modeling complex adaptative system.