
The Tagged Events Specification Language
Reconciling Heterogeneous Execution Traces

Frédéric Boulanger
Christophe Jacquet Cécile Hardebolle Iuliana Prodan Hai Nguyen Van

CentraleSupélec – LMF

Frédéric Boulanger TESL 1 / 33

About me

Frédéric Boulanger frederic.boulanger@centralesupelec.fr

Professor at CentraleSupélec since 1994

Researcher at Laboratoire Méthodes Formelles (LMF), created in 2021

Former head of the Department of Computer Science

In charge of the Software Sciences 3rd year concentration:

20 to 30 students each year, majoring in computer science

focus on theoretical fundations, languages, semantics, proofs

modeling, specification, verification, MDE

Output to all sectors: counselling, finance, research, development, R&D

Frédéric Boulanger TESL 2 / 33

mailto:frederic.boulanger@centralesupelec.fr

Agenda

1 Context: execution of heterogeneous models

2 TESL

3 Solving TESL specifications

4 Running simulations

5 Semantic Framework for Timed Coordination Languages

6 Conclusion

Frédéric Boulanger TESL 3 / 33

Context: Heterogeneous Models

Software Sensors

Networks

Aerodynamics

MechanicsActuators

Electronics

Control

Environment

Frédéric Boulanger TESL 4 / 33

Context: Heterogeneous Models

Software Sensors

Networks

Aerodynamics

MechanicsActuators

Electronics

Control

Environment

Frédéric Boulanger TESL 4 / 33

Context: Heterogeneous Models

Software Sensors

Networks

Aerodynamics

MechanicsActuators

Electronics

Control

Environment

Frédéric Boulanger TESL 4 / 33

Context: Heterogeneous Models

Software Sensors

Networks

Aerodynamics

MechanicsActuators

Electronics

Control

Environment

Frédéric Boulanger TESL 4 / 33

Execution of Heterogeneous Models

Execution of homogeneous parts
Interpret the structure according to a paradigm
Each paradigm brings notions of:

Data (events, samples, symbols, functions of continuous time)
Time (logical, chronometric, with or without durations)
Control (triggering of behaviors, availability of data, concurrency)

A B

A BFSM

A B

CSP

Reconciliation of heterogeneous execution traces
Transform data at the boundaries

Synchronize different time scales

Compute control

Frédéric Boulanger TESL 5 / 33

Execution of Heterogeneous Models

Execution of homogeneous parts
Interpret the structure according to a paradigm
Each paradigm brings notions of:

Data (events, samples, symbols, functions of continuous time)
Time (logical, chronometric, with or without durations)
Control (triggering of behaviors, availability of data, concurrency)

A B

A BFSM

A B

CSP

Reconciliation of heterogeneous execution traces
Transform data at the boundaries

Synchronize different time scales

Compute control

Frédéric Boulanger TESL 5 / 33

Execution of Heterogeneous Models

Execution of homogeneous parts
Interpret the structure according to a paradigm
Each paradigm brings notions of:

Data (events, samples, symbols, functions of continuous time)
Time (logical, chronometric, with or without durations)
Control (triggering of behaviors, availability of data, concurrency)

A B

A BFSM

A B

CSP

Reconciliation of heterogeneous execution traces
Transform data at the boundaries

Synchronize different time scales

Compute control

Frédéric Boulanger TESL 5 / 33

Execution of Heterogeneous Models

Execution of homogeneous parts
Interpret the structure according to a paradigm
Each paradigm brings notions of:

Data (events, samples, symbols, functions of continuous time)
Time (logical, chronometric, with or without durations)
Control (triggering of behaviors, availability of data, concurrency)

Reconciliation of heterogeneous execution traces
Transform data at the boundaries

Synchronize different time scales

Compute control

Frédéric Boulanger TESL 5 / 33

Example

Example: power window demo

bus

DE

TFSM SDF

Frédéric Boulanger TESL 6 / 33

Example

Example: power window demo

bus

DE

TFSM SDF

Frédéric Boulanger TESL 6 / 33

Time and Control in the Power Window

C

DE

S
w

itc
h

DE-TFSM

×2.0+1.0

M

Controller

C

State
machine

@0.0

TFSM

DE-SDF

∆1.0@1.0

SDF

Window

SDF

Window
model

SDF

D
is

pl
ay

∆

Time runs twice as fast in state machine than in DE and is offset by 1The state machine must receive control at time 0 on the TFSM time scale
The window model must receive control with period 1.0
starting at 1.0 on the DE time scale

Frédéric Boulanger TESL 7 / 33

Time and Control in the Power Window

C

DE

S
w

itc
h

DE-TFSM ×2.0+1.0

M

Controller

C

State
machine

@0.0

TFSM

DE-SDF

∆1.0@1.0

SDF

Window

SDF

Window
model

SDF

D
is

pl
ay

∆

Time runs twice as fast in state machine than in DE and is offset by 1

The state machine must receive control at time 0 on the TFSM time scale
The window model must receive control with period 1.0
starting at 1.0 on the DE time scale

Frédéric Boulanger TESL 7 / 33

Time and Control in the Power Window

C

DE

S
w

itc
h

DE-TFSM ×2.0+1.0

M

Controller

C

State
machine

@0.0

TFSM

DE-SDF

∆1.0@1.0

SDF

Window

SDF

Window
model

SDF

D
is

pl
ay

∆

Time runs twice as fast in state machine than in DE and is offset by 1

The state machine must receive control at time 0 on the TFSM time scale

The window model must receive control with period 1.0
starting at 1.0 on the DE time scale

Frédéric Boulanger TESL 7 / 33

Time and Control in the Power Window

C

DE

S
w

itc
h

DE-TFSM ×2.0+1.0

M

Controller

C

State
machine

@0.0

TFSM

DE-SDF ∆1.0@1.0

SDF

Window

SDF

Window
model

SDF

D
is

pl
ay

∆

Time runs twice as fast in state machine than in DE and is offset by 1The state machine must receive control at time 0 on the TFSM time scale

The window model must receive control with period 1.0
starting at 1.0 on the DE time scale

Frédéric Boulanger TESL 7 / 33

Time and Control in the Power Window

C

DE

S
w

itc
h

DE-TFSM ×2.0+1.0

M

Controller

C

State
machine

@0.0

TFSM

DE-SDF ∆1.0@1.0

SDF

Window

SDF

Window
model

SDF

D
is

pl
ay

∆

Time runs twice as fast in state machine than in DE and is offset by 1The state machine must receive control at time 0 on the TFSM time scale
The window model must receive control with period 1.0
starting at 1.0 on the DE time scale

Frédéric Boulanger TESL 7 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 15.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

Clocks are used for modeling the control of different parts of the model
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 15.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

Control for the top level model implies control in the simulation
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 15.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

Control for embedded models imply control for the embedding model
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 15.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

Time in TFSM runs twice as fast as in DE and is offset by one
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 15.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

TFSM must receive control at 0.0
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 15.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

So there must be control in DE at -0.5
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 15.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

SDF must receive control with period 1.0 on DE time starting at 1.0
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 15.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

The switch block must receive control to produce data
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 15.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

DE semantics creates control for the TFSM when it receives inputs
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 1

5.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

The TFSM controller model has timed transitions
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 1

5.0 7.0 15.0 21.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

TFSM semantics creates control in TFSM for timed transitions
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 1

5.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

When do these events occur?
Frédéric Boulanger TESL 8 / 33

Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

×
2
+

1

0.0

-0.5

1.0

1.0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0

8.0

9.0

9.0

10.0

10.0

2.0 3.0 5.0 7.0 10.0

2.8 7.4 10.1

2.8 7.4 10.1

4.0 6.0 10.0 14.0 20.0

5.6 14.8 20.2

Stop Up

Up
auto

Up
manu

cmd_up
cm

d_neutra
l

after 1

5.0 7.0

2.5 3.5

? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

When do these events occur? Driving clocks drive the simulation.
Frédéric Boulanger TESL 8 / 33

Agenda

1 Context: execution of heterogeneous models

2 TESL

3 Solving TESL specifications

4 Running simulations

5 Semantic Framework for Timed Coordination Languages

6 Conclusion

Frédéric Boulanger TESL 9 / 33

TESL

Goal
Model relations between control and time in heterogeneous models

Allow for deterministic simulations

Allow the synchronization of the simulation with the environment

Sources
Synchronous languages (Esterel) for causality and preemption

Tagged Signal Model and MARTE UML profile for the notions of time

CCSL for the declarative syntax

Key ideas
Events are modeled by clocks

Event occurrences are modeled by ticks

A tick has a tag which belongs to the domain of its clock

A behavior is a series of instants which contain simultaneous ticks
Frédéric Boulanger TESL 10 / 33

TESL static elements

Clocks
T -clock: clock with time domain T

Time domain T = ordered set with +, −, ×, / operations, 0 and 1

Examples of time domains: {⋆},Z,D,Q,R,R×N

Implications
a implies b each instant with a tick on a also has a tick on b

Conditional implication: implication guarded by a Mealy machine

Time delays
a time delayed by d on m implies b d > 0

Tag relations

dom(a)
d−→←−
r

dom(b) link the time scales of a and b

Frédéric Boulanger TESL 11 / 33

TESL dynamic elements

Creation of ticks
Sporadic clock: a clock “preloaded” with ticks at given tags

Periodic clock: a clock with an initial tick and a time delay on itself

Building behaviors
At any instant Ii

t ∈ a, t ∈ Ii ,a implies b
∃t ′ ∈ b, t ′ ∈ Ii

(causality)

t ∈ a, t ∈ Ii , t ′ ∈ b, t ≡ t ′

t ′ ∈ Ii
(synchronization)

With t ≡ t ′⇔


d̂ (t) = t ′

or
t = r̂ (t ′)

Frédéric Boulanger TESL 12 / 33

Example: implication

Specification
Z-clock a periodic 1
Z-clock s sporadic 2, 6
Z-clock e sporadic 4
unit-clock b

a sustained from s to e implies b
@tagref a @maxstep 10 @output tikz standalone

Frédéric Boulanger TESL 13 / 33

Example: implication

Specification
Z-clock a periodic 1
Z-clock s sporadic 2, 6
Z-clock e sporadic 4
unit-clock b

a sustained from s to e implies b
@tagref a @maxstep 10 @output tikz standalone

Result
a
s
e
b

0 1 2 3 4 5 6 7 8 9

Frédéric Boulanger TESL 13 / 33

Example: implication

Specification
Z-clock a periodic 1
Z-clock s sporadic 2, 6
Z-clock e sporadic 4
unit-clock b

a sustained from s to e implies b
@tagref a @maxstep 10 @output tikz standalone

Result
a
s
e
b

0 1 2 3 4 5 6 7 8 9

2 6

4

Frédéric Boulanger TESL 13 / 33

Example: implication

Specification
Z-clock a periodic 1
Z-clock s sporadic 2, 6 tag relation s = a
Z-clock e sporadic 4 tag relation e = a
unit-clock b

a sustained from s to e implies b
@tagref a @maxstep 10 @output tikz standalone

Frédéric Boulanger TESL 13 / 33

Example: implication

Specification
Z-clock a periodic 1
Z-clock s sporadic 2, 6 tag relation s = a
Z-clock e sporadic 4 tag relation e = a
unit-clock b

a sustained from s to e implies b
@tagref a @maxstep 10 @output tikz standalone

Result
a
s
e
b

0 1 2 3 4 5 6 7 8 9

Frédéric Boulanger TESL 13 / 33

Example: Time delayed implication

Specification
Q-clock a sporadic 2, 4
Q-clock m tag relation m = a
unit-clock b

a time delayed by 2.5 on m implies b
@tagref a @output tikz standalone

Frédéric Boulanger TESL 14 / 33

Example: Time delayed implication

Specification
Q-clock a sporadic 2, 4
Q-clock m tag relation m = a
unit-clock b

a time delayed by 2.5 on m implies b
@tagref a @output tikz standalone

Result
a
m
b

2 4 4.5 6.5

2.5 2.5

Frédéric Boulanger TESL 14 / 33

Example: Time delayed implication

Specification
Q-clock a sporadic 2, 4
Q-clock m tag relation m = 2*a + 1
unit-clock b

a time delayed by 2.5 on m implies b
@tagref a @output tikz standalone

Frédéric Boulanger TESL 14 / 33

Example: Time delayed implication

Specification
Q-clock a sporadic 2, 4
Q-clock m tag relation m = 2*a + 1
unit-clock b

a time delayed by 2.5 on m implies b
@tagref a @output tikz standalone

Result
a
m
b

2 3.25 4 5.25

5 7.5 9 11.5

2.5 2.5

Frédéric Boulanger TESL 14 / 33

More about tag relations

Tag relations are pairs of non-decreasing functions (d , r) with:

d ◦ r ◦d = d

r ◦d ◦ r = r

But they are not necessarily bijections nor the reverse of each other.

d

r

d

d

r

d

r

r

This condition allows a clock to be “finer” than another clock without forcing
different tags to be simultaneous on a clock.

Frédéric Boulanger TESL 15 / 33

More about tag relations

Specification
Z-clock a sporadic 2, 4, 5
Z-clock b tag relation a = 2*b + 0
a implies b

@tagref b @output tikz standalone

a = 2*b + 0⇒
{

d : t 7→ 2t
r : t 7→ t÷2

Frédéric Boulanger TESL 16 / 33

More about tag relations

Specification
Z-clock a sporadic 2, 4, 5
Z-clock b tag relation a = 2*b + 0
a implies b

@tagref b @output tikz standalone

a = 2*b + 0⇒
{

d : t 7→ 2t
r : t 7→ t÷2

Result
a
b

1 22

2 4 & 5

Frédéric Boulanger TESL 16 / 33

More about tag relations

Specification
Z-clock a sporadic 2, 4, 5
Z-clock b tag relation a = 2*b + 0
a implies b

@tagref a @output tikz standalone

a = 2*b + 0⇒
{

d : t 7→ 2t
r : t 7→ t÷2

Frédéric Boulanger TESL 16 / 33

More about tag relations

Specification
Z-clock a sporadic 2, 4, 5
Z-clock b tag relation a = 2*b + 0
a implies b

@tagref a @output tikz standalone

a = 2*b + 0⇒
{

d : t 7→ 2t
r : t 7→ t÷2

Result
a
b

2 4 5

1 2 2

Frédéric Boulanger TESL 16 / 33

Agenda

1 Context: execution of heterogeneous models

2 TESL

3 Solving TESL specifications

4 Running simulations

5 Semantic Framework for Timed Coordination Languages

6 Conclusion

Frédéric Boulanger TESL 17 / 33

Solving TESL specifications

Goal
Build a series of instants (Ii)

Each instant contains simultaneous ticks
according to the causality and synchronization rules

All ticks must be assigned to an instant

For any clock c, t ∈ c, t ∈ Ii , t ′ ∈ c, t ′ ∈ Ij , j > i⇒ t ′ ≥ t

Building an instant
A tick can be forced into an instant (input)

A tick on a greedy clock is put into an instant as soon as possible

A tick on a non-greedy clock is put into an instant only when needed

The causality and synchronization rules are applied
until a fixed-point is reached (it contains at most one tick per clock)

Frédéric Boulanger TESL 18 / 33

Solving TESL specifications

Goal
Build a series of instants (Ii)

Each instant contains simultaneous ticks
according to the causality and synchronization rules

All ticks must be assigned to an instant

For any clock c, t ∈ c, t ∈ Ii , t ′ ∈ c, t ′ ∈ Ij , j > i⇒ t ′ ≥ t

Building an instant
A tick can be forced into an instant (input)

A tick on a greedy clock is put into an instant as soon as possible

A tick on a non-greedy clock is put into an instant only when needed

The causality and synchronization rules are applied
until a fixed-point is reached (it contains at most one tick per clock)

Frédéric Boulanger TESL 18 / 33

Solving TESL specifications

Initial
clocks

a
1

b

c
3

implies×3−1

×2+1

Frédéric Boulanger TESL 19 / 33

Solving TESL specifications

Step 1

a
1

b
⊥

c
3

implies×3−1

×2+1

Applying the implication relation

Frédéric Boulanger TESL 19 / 33

Solving TESL specifications

Step 2

a
1

b
2

c
3

implies×3−1

×2+1

Using the tag relation between a and b

Frédéric Boulanger TESL 19 / 33

Solving TESL specifications

Final
clocks

a
1

b
2

c
3

implies×3−1

×2+1

Using the tag relation between b and c

Frédéric Boulanger TESL 19 / 33

Dealing with time islands

A time island is a connected subgraph of the tag relation graph.
Merging a floating tick with a tagged tick

can be done independently in each time island.

Initial
clocks

a
1 3

b
5

c
7

d
5

implies×2+1

implies

implies×3−2

Frédéric Boulanger TESL 20 / 33

Dealing with time islands

A time island is a connected subgraph of the tag relation graph.
Merging a floating tick with a tagged tick

can be done independently in each time island.

After
implications

a
1 3

b
⊥ 5

c
⊥ 7

d
⊥ 5

implies×2+1

implies

implies×3−2

Frédéric Boulanger TESL 20 / 33

Dealing with time islands

A time island is a connected subgraph of the tag relation graph.
Merging a floating tick with a tagged tick

can be done independently in each time island.

Using
tag relations

a
1 3

b
⊥ 5

c
⊥ 7

d
⊥ 5

implies×2+1

implies

implies×3−2

3 7

2

3

13

Frédéric Boulanger TESL 20 / 33

Dealing with time islands

A time island is a connected subgraph of the tag relation graph.
Merging a floating tick with a tagged tick

can be done independently in each time island.

After
merging

a
1 3

b
3 5

c
7

d
3 5

implies×2+1

implies

implies×3−2

Frédéric Boulanger TESL 20 / 33

Greedy clocks

Assuming clocks c and d are greedy,
we should put ticks 7 and 5 in an instant as soon as possible

Initial
clocks

a
1 3

b
5

c
7

d
5

implies×2+1

×3−2

Frédéric Boulanger TESL 21 / 33

Greedy clocks

Assuming clocks c and d are greedy,
we should put ticks 7 and 5 in an instant as soon as possible

After
implications

a
1 3

b
⊥ 5

c
7

d
5

implies×2+1

×3−2

Frédéric Boulanger TESL 21 / 33

Greedy clocks

Assuming clocks c and d are greedy,
we should put ticks 7 and 5 in an instant as soon as possible

Using
tag relations

a
1 3

b
⊥ 5

c
7

d
5

implies×2+1

×3−2

3 7

2

3

13

Frédéric Boulanger TESL 21 / 33

Greedy clocks

Assuming clocks c and d are greedy,
we should put ticks 7 and 5 in an instant as soon as possible

After
merging

with
greedy c and d

a
1 3

b
3 5

c
7

d
5

implies×2+1

×3−2

Frédéric Boulanger TESL 21 / 33

Agenda

1 Context: execution of heterogeneous models

2 TESL

3 Solving TESL specifications

4 Running simulations

5 Semantic Framework for Timed Coordination Languages

6 Conclusion

Frédéric Boulanger TESL 22 / 33

TESL for running simulations

Model time
Modeling causality between events in a model

Modeling time delays in a model

Modeling relations between time scales in a model

“Real” time
Mapping external events to model events

Mapping durations from external time to model time

Examples of driving clocks
Event feeder clock (ticks each time an external event occurs)

Real-time periodic clock (ticks periodically on the system clock)

Time synchronizing clock (synchronizes its ticks with system time)

AFAP clock (ticks as fast as possible)

Frédéric Boulanger TESL 23 / 33

TESL for running simulations

Model time
Modeling causality between events in a model

Modeling time delays in a model

Modeling relations between time scales in a model

“Real” time
Mapping external events to model events

Mapping durations from external time to model time

Examples of driving clocks
Event feeder clock (ticks each time an external event occurs)

Real-time periodic clock (ticks periodically on the system clock)

Time synchronizing clock (synchronizes its ticks with system time)

AFAP clock (ticks as fast as possible)

Frédéric Boulanger TESL 23 / 33

TESL for running simulations

Model time
Modeling causality between events in a model

Modeling time delays in a model

Modeling relations between time scales in a model

“Real” time
Mapping external events to model events

Mapping durations from external time to model time

Examples of driving clocks
Event feeder clock (ticks each time an external event occurs)

Real-time periodic clock (ticks periodically on the system clock)

Time synchronizing clock (synchronizes its ticks with system time)

AFAP clock (ticks as fast as possible)

Frédéric Boulanger TESL 23 / 33

TESL for running simulations

For each simulation step
1 Solve the specification with greedy driving clocks

2 Wait for any of the driving clock with a tick in the resulting instant
3 Solve the specification with non-greedy driving clocks

4 Compute the simulation step using the resulting instant
5 Compute the next specification

Advantages
The simulation engine is free from platform specific code

The same formalism is used for both model time and real time

The mapping between model time and real time is explicit

Model-specific synchronization can be added as new driving clocks

Frédéric Boulanger TESL 24 / 33

TESL for running simulations

For each simulation step
1 Solve the specification with greedy driving clocks

2 Wait for any of the driving clock with a tick in the resulting instant
3 Solve the specification with non-greedy driving clocks

4 Compute the simulation step using the resulting instant
5 Compute the next specification

Advantages
The simulation engine is free from platform specific code

The same formalism is used for both model time and real time

The mapping between model time and real time is explicit

Model-specific synchronization can be added as new driving clocks

Frédéric Boulanger TESL 24 / 33

1 Context: execution of heterogeneous models

2 TESL

3 Solving TESL specifications

4 Running simulations

5 Semantic Framework for Timed Coordination Languages

6 Conclusion

Frédéric Boulanger TESL 25 / 33

Runs

TESL specifications describe runs

A run is a sequence of observations of an enumerable set of clocks K

Each observation is an instant at which a clock:

may tick or not

has a time stamp

ρ : N→K→ (B×T)

Time cannot flow backwards:

i > j =⇒ time(ρ i c)≥ time(ρ j c)

Frédéric Boulanger TESL 26 / 33

Runs

TESL specifications describe runs

A run is a sequence of observations of an enumerable set of clocks K

Each observation is an instant at which a clock:

may tick or not

has a time stamp

ρ : N→K→ (B×T)

Time cannot flow backwards:

i > j =⇒ time(ρ i c)≥ time(ρ j c)

Frédéric Boulanger TESL 26 / 33

Denotational Semantics

q
C1 sporadic τ on C2

y
TESL

def
= {ρ | ∃n ∈ N. ticks(ρ n C1)∧ time(ρ n C2) = τ}

q
C1 implies C2

y
TESL

def
= {ρ | ∀n ∈ N. ticks(ρ n C1) =⇒ ticks(ρ n C2)}q

time relation (C1, C2) ∈ R
y

TESL
def
=

{
ρ
∣∣ ∀n ∈ N.

(
time(ρ n C1), time(ρ n C2)

)
∈ R

}
q

Cmaster time delayed by δτ on Cmeas implies Cslave
y

TESL
def
= {ρ | ∀n ∈ N. ticks(ρ n Cmaster) =⇒

∀m ≥ n. elapsed(ρ,Cmeas,n,δτ,m) =⇒ ticks(ρ m Cslave)}

Reasonning on runs, proof of invariance by stuttering.

Frédéric Boulanger TESL 27 / 33

Denotational Semantics

q
C1 sporadic τ on C2

y
TESL

def
= {ρ | ∃n ∈ N. ticks(ρ n C1)∧ time(ρ n C2) = τ}

q
C1 implies C2

y
TESL

def
= {ρ | ∀n ∈ N. ticks(ρ n C1) =⇒ ticks(ρ n C2)}q

time relation (C1, C2) ∈ R
y

TESL
def
=

{
ρ
∣∣ ∀n ∈ N.

(
time(ρ n C1), time(ρ n C2)

)
∈ R

}
q

Cmaster time delayed by δτ on Cmeas implies Cslave
y

TESL
def
= {ρ | ∀n ∈ N. ticks(ρ n Cmaster) =⇒

∀m ≥ n. elapsed(ρ,Cmeas,n,δτ,m) =⇒ ticks(ρ m Cslave)}

Reasonning on runs, proof of invariance by stuttering.

Frédéric Boulanger TESL 27 / 33

Operational Semantics

Specification = potential future

Action = make a decision in the present

State = decisions that have already been made

Context: Γ |=n Ψ▷Φ
Γ is the past up to instant n
Ψ is the remaining constraint on instant n
Φ is the constraint on the future

Primitive Constraints in Γ
q

C ⇑n
y

prim
def
=

{
ρ | ticks(ρ n C)

}
q

C ̸⇑n
y

prim
def
=

{
ρ | ¬ ticks(ρ n C)

}
q

C ⇓n x
y

prim
def
=

{
ρ | time(ρ n C) = x

}
q
(tvalC1

n1
, tvalC2

n2
) ∈ R

y
prim

def
=

{
ρ |

(
time(ρ n1 C1), time(ρ n2 C2)

)
∈ R

}

Frédéric Boulanger TESL 28 / 33

Operational Semantics

Specification = potential future

Action = make a decision in the present

State = decisions that have already been made

Context: Γ |=n Ψ▷Φ
Γ is the past up to instant n
Ψ is the remaining constraint on instant n
Φ is the constraint on the future

Primitive Constraints in Γ
q

C ⇑n
y

prim
def
=

{
ρ | ticks(ρ n C)

}
q

C ̸⇑n
y

prim
def
=

{
ρ | ¬ ticks(ρ n C)

}
q

C ⇓n x
y

prim
def
=

{
ρ | time(ρ n C) = x

}
q
(tvalC1

n1
, tvalC2

n2
) ∈ R

y
prim

def
=

{
ρ |

(
time(ρ n1 C1), time(ρ n2 C2)

)
∈ R

}

Frédéric Boulanger TESL 28 / 33

Operational Semantics

Specification = potential future

Action = make a decision in the present

State = decisions that have already been made

Context: Γ |=n Ψ▷Φ
Γ is the past up to instant n
Ψ is the remaining constraint on instant n
Φ is the constraint on the future

Primitive Constraints in Γ
q

C ⇑n
y

prim
def
=

{
ρ | ticks(ρ n C)

}
q

C ̸⇑n
y

prim
def
=

{
ρ | ¬ ticks(ρ n C)

}
q

C ⇓n x
y

prim
def
=

{
ρ | time(ρ n C) = x

}
q
(tvalC1

n1
, tvalC2

n2
) ∈ R

y
prim

def
=

{
ρ |

(
time(ρ n1 C1), time(ρ n2 C2)

)
∈ R

}
Frédéric Boulanger TESL 28 / 33

Operational Rules

Introduction rule

Γ |=n ∅▷Φ →i Γ |=n+1 Φ▷∅

Elimination rules

Γ |=n Ψ ∧ (C1 sporadic τ on C2)▷Φ (sporadic−one1)

→e Γ |=n Ψ▷Φ ∧ (C1 sporadic τ on C2)

Γ |=n Ψ ∧ (C1 sporadic τ on C2)▷Φ (sporadic−one2)

→e Γ∪
{

C1 ⇑n,C2 ⇓n τ
}
|=n Ψ▷Φ

Γ |=n Ψ ∧ (C1 implies C2)▷Φ (impliese1)

→e Γ∪
{

C1 ̸⇑n
}
|=n Ψ▷Φ ∧ (C1 implies C2)

Γ |=n Ψ ∧ (C1 implies C2)▷Φ (impliese2)

→e Γ∪
{

C1 ⇑n,C2 ⇑n
}
|=n Ψ▷Φ ∧ (C1 implies C2)

Frédéric Boulanger TESL 29 / 33

Operational Rules

Introduction rule

Γ |=n ∅▷Φ →i Γ |=n+1 Φ▷∅

Elimination rules

Γ |=n Ψ ∧ (C1 sporadic τ on C2)▷Φ (sporadic−one1)

→e Γ |=n Ψ▷Φ ∧ (C1 sporadic τ on C2)

Γ |=n Ψ ∧ (C1 sporadic τ on C2)▷Φ (sporadic−one2)

→e Γ∪
{

C1 ⇑n,C2 ⇓n τ
}
|=n Ψ▷Φ

Γ |=n Ψ ∧ (C1 implies C2)▷Φ (impliese1)

→e Γ∪
{

C1 ̸⇑n
}
|=n Ψ▷Φ ∧ (C1 implies C2)

Γ |=n Ψ ∧ (C1 implies C2)▷Φ (impliese2)

→e Γ∪
{

C1 ⇑n,C2 ⇑n
}
|=n Ψ▷Φ ∧ (C1 implies C2)

Frédéric Boulanger TESL 29 / 33

Operational Semantics

Properties
Local termination (Ψ eventually becomes empty)

Progress (We can reach any instant n in a run)

Soundness and completeness with respect to the denotational semantics

q
∅ |=0 Ψ▷∅

y
config =

q
Ψ

y
TESL

Uses
Monitoring of heterogeneous systems

Online testing

More efficient implementation in SML: Heron

Frédéric Boulanger TESL 30 / 33

https://github.com/heron-solver/heron

Operational Semantics

Properties
Local termination (Ψ eventually becomes empty)

Progress (We can reach any instant n in a run)

Soundness and completeness with respect to the denotational semantics

q
∅ |=0 Ψ▷∅

y
config =

q
Ψ

y
TESL

Uses
Monitoring of heterogeneous systems

Online testing

More efficient implementation in SML: Heron

Frédéric Boulanger TESL 30 / 33

https://github.com/heron-solver/heron

Agenda

1 Context: execution of heterogeneous models

2 TESL

3 Solving TESL specifications

4 Running simulations

5 Semantic Framework for Timed Coordination Languages

6 Conclusion

Frédéric Boulanger TESL 31 / 33

Conclusion
TESL

Synchronous language with tags and durations

Deterministic, with constructive semantics

A Timed Coordination Language
Usable for simulation (Eclipse plug-in + ModHel’X)

With a well defined semantics (Isabelle/HOL theory)

Usable for monitoring and testing (Heron implementation)

Execution of Heterogeneous Models
Modeling causality for data and control, modeling time delays

Modeling synchronization between heterogeneous time scales

A Framework for Coordination Languages
Past/Present/Future pattern

Infrastructure for proving soundness and completeness

Frédéric Boulanger TESL 32 / 33

https://wdi.centralesupelec.fr/software/TESL/
https://github.com/heron-solver/TESL-Theory
https://github.com/heron-solver/heron

Conclusion
TESL

Synchronous language with tags and durations

Deterministic, with constructive semantics

A Timed Coordination Language
Usable for simulation (Eclipse plug-in + ModHel’X)

With a well defined semantics (Isabelle/HOL theory)

Usable for monitoring and testing (Heron implementation)

Execution of Heterogeneous Models
Modeling causality for data and control, modeling time delays

Modeling synchronization between heterogeneous time scales

A Framework for Coordination Languages
Past/Present/Future pattern

Infrastructure for proving soundness and completeness

Frédéric Boulanger TESL 32 / 33

https://wdi.centralesupelec.fr/software/TESL/
https://github.com/heron-solver/TESL-Theory
https://github.com/heron-solver/heron

Conclusion
TESL

Synchronous language with tags and durations

Deterministic, with constructive semantics

A Timed Coordination Language
Usable for simulation (Eclipse plug-in + ModHel’X)

With a well defined semantics (Isabelle/HOL theory)

Usable for monitoring and testing (Heron implementation)

Execution of Heterogeneous Models
Modeling causality for data and control, modeling time delays

Modeling synchronization between heterogeneous time scales

A Framework for Coordination Languages
Past/Present/Future pattern

Infrastructure for proving soundness and completeness

Frédéric Boulanger TESL 32 / 33

https://wdi.centralesupelec.fr/software/TESL/
https://github.com/heron-solver/TESL-Theory
https://github.com/heron-solver/heron

Conclusion
TESL

Synchronous language with tags and durations

Deterministic, with constructive semantics

A Timed Coordination Language
Usable for simulation (Eclipse plug-in + ModHel’X)

With a well defined semantics (Isabelle/HOL theory)

Usable for monitoring and testing (Heron implementation)

Execution of Heterogeneous Models
Modeling causality for data and control, modeling time delays

Modeling synchronization between heterogeneous time scales

A Framework for Coordination Languages
Past/Present/Future pattern

Infrastructure for proving soundness and completeness
Frédéric Boulanger TESL 32 / 33

https://wdi.centralesupelec.fr/software/TESL/
https://github.com/heron-solver/TESL-Theory
https://github.com/heron-solver/heron

Thank You

Frédéric Boulanger TESL 33 / 33

	Context: execution of heterogeneous models
	TESL
	Solving TESL specifications
	Running simulations
	Semantic Framework for Timed Coordination Languages
	Conclusion

