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Execution of Heterogeneous Models

Execution of homogeneous parts
Interpret the structure according to a paradigm
Each paradigm brings notions of:

Data (events, samples, symbols, functions of continuous time)
Time (logical, chronometric, with or without durations)
Control (triggering of behaviors, availability of data, concurrency)

A B

A BFSM

A B

CSP

Reconciliation of heterogeneous execution traces
Transform data at the boundaries

Synchronize different time scales

Compute control
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Time and Control in the Power Window
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Time runs twice as fast in state machine than in DE and is offset by 1The state machine must receive control at time 0 on the TFSM time scale
The window model must receive control with period 1.0
starting at 1.0 on the DE time scale
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Modeling Time and Control
in the Power Window
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Clocks are used for modeling the control of different parts of the model
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Control for the top level model implies control in the simulation
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DE semantics creates control for the TFSM when it receives inputs
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The TFSM controller model has timed transitions
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When do these events occur?
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When do these events occur? Driving clocks drive the simulation.
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TESL

Goal
Model relations between control and time in heterogeneous models

Allow for deterministic simulations

Allow the synchronization of the simulation with the environment

Sources
Synchronous languages (Esterel) for causality and preemption

Tagged Signal Model and MARTE UML profile for the notions of time

CCSL for the declarative syntax

Key ideas
Events are modeled by clocks

Event occurrences are modeled by ticks

A tick has a tag which belongs to the domain of its clock

A behavior is a series of instants which contain simultaneous ticks
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TESL static elements

Clocks
T -clock: clock with time domain T

Time domain T = ordered set with +, −, ×, / operations, 0 and 1

Examples of time domains: {⋆},Z,D,Q,R,R×N

Implications
a implies b each instant with a tick on a also has a tick on b

Conditional implication: implication guarded by a Mealy machine

Time delays
a time delayed by d on m implies b d > 0

Tag relations

dom(a)
d−→←−
r

dom(b) link the time scales of a and b
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TESL dynamic elements

Creation of ticks
Sporadic clock: a clock “preloaded” with ticks at given tags

Periodic clock: a clock with an initial tick and a time delay on itself

Building behaviors
At any instant Ii

t ∈ a, t ∈ Ii ,a implies b
∃t ′ ∈ b, t ′ ∈ Ii

(causality)

t ∈ a, t ∈ Ii , t ′ ∈ b, t ≡ t ′

t ′ ∈ Ii
(synchronization)

With t ≡ t ′⇔


d̂ (t) = t ′

or
t = r̂ (t ′)
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Example: implication

Specification
Z-clock a periodic 1
Z-clock s sporadic 2, 6
Z-clock e sporadic 4
unit-clock b

a sustained from s to e implies b
@tagref a @maxstep 10 @output tikz standalone
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b
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Example: implication

Specification
Z-clock a periodic 1
Z-clock s sporadic 2, 6 tag relation s = a
Z-clock e sporadic 4 tag relation e = a
unit-clock b

a sustained from s to e implies b
@tagref a @maxstep 10 @output tikz standalone
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Example: Time delayed implication

Specification
Q-clock a sporadic 2, 4
Q-clock m tag relation m = a
unit-clock b

a time delayed by 2.5 on m implies b
@tagref a @output tikz standalone
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Example: Time delayed implication

Specification
Q-clock a sporadic 2, 4
Q-clock m tag relation m = a
unit-clock b

a time delayed by 2.5 on m implies b
@tagref a @output tikz standalone

Result
a
m
b

2 4 4.5 6.5

2.5 2.5
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Example: Time delayed implication

Specification
Q-clock a sporadic 2, 4
Q-clock m tag relation m = 2*a + 1
unit-clock b

a time delayed by 2.5 on m implies b
@tagref a @output tikz standalone
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Example: Time delayed implication

Specification
Q-clock a sporadic 2, 4
Q-clock m tag relation m = 2*a + 1
unit-clock b

a time delayed by 2.5 on m implies b
@tagref a @output tikz standalone

Result
a
m
b

2 3.25 4 5.25

5 7.5 9 11.5

2.5 2.5
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More about tag relations

Tag relations are pairs of non-decreasing functions (d , r) with:

d ◦ r ◦d = d

r ◦d ◦ r = r

But they are not necessarily bijections nor the reverse of each other.

d

r

d

d

r

d

r

r

This condition allows a clock to be “finer” than another clock without forcing
different tags to be simultaneous on a clock.
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More about tag relations

Specification
Z-clock a sporadic 2, 4, 5
Z-clock b tag relation a = 2*b + 0
a implies b

@tagref b @output tikz standalone

a = 2*b + 0⇒
{

d : t 7→ 2t
r : t 7→ t÷2
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More about tag relations

Specification
Z-clock a sporadic 2, 4, 5
Z-clock b tag relation a = 2*b + 0
a implies b

@tagref b @output tikz standalone

a = 2*b + 0⇒
{

d : t 7→ 2t
r : t 7→ t÷2

Result
a
b

1 22

2 4 & 5
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More about tag relations

Specification
Z-clock a sporadic 2, 4, 5
Z-clock b tag relation a = 2*b + 0
a implies b

@tagref a @output tikz standalone

a = 2*b + 0⇒
{

d : t 7→ 2t
r : t 7→ t÷2

Result
a
b
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Solving TESL specifications

Goal
Build a series of instants (Ii)

Each instant contains simultaneous ticks
according to the causality and synchronization rules

All ticks must be assigned to an instant

For any clock c, t ∈ c, t ∈ Ii , t ′ ∈ c, t ′ ∈ Ij , j > i⇒ t ′ ≥ t

Building an instant
A tick can be forced into an instant (input)

A tick on a greedy clock is put into an instant as soon as possible

A tick on a non-greedy clock is put into an instant only when needed

The causality and synchronization rules are applied
until a fixed-point is reached (it contains at most one tick per clock)
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Solving TESL specifications

Initial
clocks

a
1

b

c
3

implies×3−1

×2+1
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Solving TESL specifications

Step 2

a
1

b
2

c
3

implies×3−1

×2+1

Using the tag relation between a and b
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Dealing with time islands

A time island is a connected subgraph of the tag relation graph.
Merging a floating tick with a tagged tick

can be done independently in each time island.

Initial
clocks

a
1 3

b
5

c
7

d
5

implies×2+1

implies

implies×3−2
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Greedy clocks

Assuming clocks c and d are greedy,
we should put ticks 7 and 5 in an instant as soon as possible
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TESL for running simulations

Model time
Modeling causality between events in a model

Modeling time delays in a model

Modeling relations between time scales in a model

“Real” time
Mapping external events to model events

Mapping durations from external time to model time

Examples of driving clocks
Event feeder clock (ticks each time an external event occurs)

Real-time periodic clock (ticks periodically on the system clock)

Time synchronizing clock (synchronizes its ticks with system time)

AFAP clock (ticks as fast as possible)
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TESL for running simulations

For each simulation step
1 Solve the specification with greedy driving clocks

2 Wait for any of the driving clock with a tick in the resulting instant
3 Solve the specification with non-greedy driving clocks

4 Compute the simulation step using the resulting instant
5 Compute the next specification

Advantages
The simulation engine is free from platform specific code

The same formalism is used for both model time and real time

The mapping between model time and real time is explicit

Model-specific synchronization can be added as new driving clocks
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Runs

TESL specifications describe runs

A run is a sequence of observations of an enumerable set of clocks K

Each observation is an instant at which a clock:

may tick or not

has a time stamp

ρ : N→K→ (B×T)

Time cannot flow backwards:

i > j =⇒ time(ρ i c)≥ time(ρ j c)
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Denotational Semantics

q
C1 sporadic τ on C2

y
TESL

def
= {ρ | ∃n ∈ N. ticks(ρ n C1)∧ time(ρ n C2) = τ}

q
C1 implies C2

y
TESL

def
= {ρ | ∀n ∈ N. ticks(ρ n C1) =⇒ ticks(ρ n C2)}q

time relation (C1, C2) ∈ R
y

TESL
def
=

{
ρ
∣∣ ∀n ∈ N.

(
time(ρ n C1), time(ρ n C2)

)
∈ R

}
q

Cmaster time delayed by δτ on Cmeas implies Cslave
y

TESL
def
= {ρ | ∀n ∈ N. ticks(ρ n Cmaster) =⇒

∀m ≥ n. elapsed(ρ,Cmeas,n,δτ,m) =⇒ ticks(ρ m Cslave)}

Reasonning on runs, proof of invariance by stuttering.
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Operational Semantics

Specification = potential future

Action = make a decision in the present

State = decisions that have already been made

Context: Γ |=n Ψ▷Φ
Γ is the past up to instant n
Ψ is the remaining constraint on instant n
Φ is the constraint on the future

Primitive Constraints in Γ
q

C ⇑n
y

prim
def
=

{
ρ | ticks(ρ n C)

}
q

C ̸⇑n
y

prim
def
=

{
ρ | ¬ ticks(ρ n C)

}
q

C ⇓n x
y

prim
def
=

{
ρ | time(ρ n C) = x

}
q
(tvalC1

n1
, tvalC2

n2
) ∈ R

y
prim

def
=

{
ρ |

(
time(ρ n1 C1), time(ρ n2 C2)

)
∈ R

}
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Operational Rules

Introduction rule

Γ |=n ∅▷Φ →i Γ |=n+1 Φ▷∅

Elimination rules

Γ |=n Ψ ∧ (C1 sporadic τ on C2)▷Φ (sporadic−one1)

→e Γ |=n Ψ▷Φ ∧ (C1 sporadic τ on C2)

Γ |=n Ψ ∧ (C1 sporadic τ on C2)▷Φ (sporadic−one2)

→e Γ∪
{

C1 ⇑n,C2 ⇓n τ
}
|=n Ψ▷Φ

Γ |=n Ψ ∧ (C1 implies C2)▷Φ (impliese1)

→e Γ∪
{

C1 ̸⇑n
}
|=n Ψ▷Φ ∧ (C1 implies C2)

Γ |=n Ψ ∧ (C1 implies C2)▷Φ (impliese2)

→e Γ∪
{

C1 ⇑n,C2 ⇑n
}
|=n Ψ▷Φ ∧ (C1 implies C2)
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Operational Semantics

Properties
Local termination (Ψ eventually becomes empty)

Progress (We can reach any instant n in a run)

Soundness and completeness with respect to the denotational semantics

q
∅ |=0 Ψ▷∅

y
config =

q
Ψ

y
TESL

Uses
Monitoring of heterogeneous systems

Online testing

More efficient implementation in SML: Heron
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Conclusion
TESL

Synchronous language with tags and durations

Deterministic, with constructive semantics

A Timed Coordination Language
Usable for simulation (Eclipse plug-in + ModHel’X)

With a well defined semantics (Isabelle/HOL theory)

Usable for monitoring and testing (Heron implementation)

Execution of Heterogeneous Models
Modeling causality for data and control, modeling time delays

Modeling synchronization between heterogeneous time scales

A Framework for Coordination Languages
Past/Present/Future pattern

Infrastructure for proving soundness and completeness
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Thank You
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