The Tagged Events Specification Language

Reconciling Heterogeneous Execution Traces

Frédéric Boulanger

Christophe Jacquet Cécile Hardebolle luliana Prodan Hai Nguyen Van

CentraleSupélec — LMF

- ') K Laboratoire
, Unlver5|te Méthodes
CentraleSupélec PARIS-SACLAY Formelles

TESL 1/33



About me

Frédéric Boulanger frederic.boulanger@centralesupelec.fr

Professor at CentraleSupélec since 1994

Researcher at Laboratoire Méthodes Formelles (LMF), created in 2021
Former head of the Department of Computer Science

In charge of the Software Sciences 3™ year concentration:
@ 20 to 30 students each year, majoring in computer science
@ focus on theoretical fundations, languages, semantics, proofs
@ modeling, specification, verification, MDE

Output to all sectors: counselling, finance, research, development, R&D

Frédéric Boulanger TESL 2/33


mailto:frederic.boulanger@centralesupelec.fr

Agenda

0 Context: execution of heterogeneous models

@ TEsL

e Solving TESL specifications
e Running simulations
e Semantic Framework for Timed Coordination Languages

@ Conclusion



Context: Heterogeneous Models




Context: Heterogeneous Models

Software Sensors

Networks
Control

Aerodynamics

Electronics

Actuators Mechanics

Frédéric Boulange TESL 4/33



Context: Heterogeneous Models

Networks
Control

Aerodynamics

Electronics

Actuators Mechanics

TESL 4/33



Context: Heterogeneous Models

-7~ R Y

e

Networks

. Aerodynamics
Electronics y

Actuators Mechanics

TESL

4/33



Execution of Heterogeneous Models

Execution of homogeneous parts

@ Interpret the structure according to a paradigm
@ Each paradigm brings notions of:

o Data (events, samples, symbols, functions of continuous time)
@ Time (logical, chronometric, with or without durations)
e Control (triggering of behaviors, availability of data, concurrency)

Frédéric Boulanger TESL 5/33



Execution of Heterogeneous Models

Execution of homogeneous parts

@ Interpret the structure according to a paradigm
@ Each paradigm brings notions of:

o Data (events, samples, symbols, functions of continuous time)
@ Time (logical, chronometric, with or without durations)
e Control (triggering of behaviors, availability of data, concurrency)

OSSO

Frédéric Boulanger TESL 5/33



Execution of Heterogeneous Models

Execution of homogeneous parts

@ Interpret the structure according to a paradigm
@ Each paradigm brings notions of:

o Data (events, samples, symbols, functions of continuous time)
@ Time (logical, chronometric, with or without durations)
e Control (triggering of behaviors, availability of data, concurrency)

@O

««%:\

Frédéric Boulanger TESL 5/33



Execution of Heterogeneous Models

Execution of homogeneous parts

@ Interpret the structure according to a paradigm
@ Each paradigm brings notions of:

o Data (events, samples, symbols, functions of continuous time)
@ Time (logical, chronometric, with or without durations)
e Control (triggering of behaviors, availability of data, concurrency)

Reconciliation of heterogeneous execution traces

@ Transform data at the boundaries
@ Synchronize different time scales
@ Compute control

Frédéric Boulanger TESL 5/33



Example

Example: power window @

< >



Example

Example: power window @

< >



Time and Control in the Power Window

Frédéric Boulanger

DE-TFSM DE-SDF
Controller TFSM Window SDF

-1>¢ State g Window g ______ -
= . hER Ko
s | {»® machine | __7I: < »¢ Model =3
= i>e PP 2

@ iq o P

TESL

DE

7/33



Time and Control in the Power Window

DE-TFSM x2.0+1.0 DE-SDF
Wi
Controller TFSM indow SDF

- r>e State g _ Window |g ______
< : -~
S L +® machine o ----x - »e model
s 10 T
@ gl e~ I ||| e------

I

Time runs twice as fast in state machine than in DE and is offset by 1

Display

Frédéric Boulanger

TESL

DE

7/33



Time and Control in the Power Window

DE-TFSM x2.0+1.0 DE-SDF
Il i
Controller TFSM Window SDF
->e  State g Window o _____.
S ~® machine |g _ 1T~ model
'% x1, o @ -----c >0
@ T ©o0 @7 || ||| e

I

The state machine must receive control at time 0 on the TFSM time scale

Display

Frédéric Boulanger

TESL

DE

7/33



Time and Control in the Power Window

1>® machine s~
Yo .-

Switch

g ©00 @

A
DE-TFSM x2.0+1.0 DE-SDF A1.001.0
Controller TFSM Window SDF
- r>e State g _ Window g ______
T »¢ Model

Display

starting at 1.0 on the DE time scale

The window model must receive control with period 1.0

Frédéric Boulanger

TESL

DE

7/33



Time and Control in the Power Window

Frédéric Boulanger

DE-TFSM x2.0+1.0 DE-SDF A1.001.0
Controller TFSM Window SDF
-1>¢ State g Window o _____. >
= . hER Ko
% L ﬁ machine ._____::_ »e model _%
é T4e @0 &7 ~------ e
TESL

DE

7/33



Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

Clocks are used for modeling the control of different-parts of the model
TESL 8/33



Modeling Time and Control
in the Power Window

Step >
DE

SDF

TFSM

Switch

Control for the top level model implies control in thessimutation
édéric Boulanger TESL 8/33




Modeling Time and Control
in the Power Window

Step

~_ 7

DE

SDF

TFSM

Switch

Control for embedded models imply control for the:embedding model
TESL 8/33



Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

Time in TFSM runs twice as fast as in DE and is offset by one
s TESL

édéric Boulanger

8/33



Modeling Time and Control
in the Power Window

Step

DE

SDF

0.0
TFSM }

Switch

TFSM must receive control at 0.0

édéric Boulanger

TESL

8/33



Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

So there must be control in DE at -0.5

édéric Boulanger

TESL

8/33



Modeling Time and Control
in the Power Window

Step |
05 1}0 2|0 3)0 40 5/0 6/0 710 80 90 100 >
DE }
1lo 20 3)0 40 5/0 6/0 70 80 90 100
SDF
0.0
TFSM }
Switch

SDF must receive control with period 1.0 on DE time starting at 1.0
Boulanger TESL

8/33



Modeling Time and Control
in the Power Window

Step — f f f f f
AA
05 1.0 20 3)0 4.0 5/0 6.0 70 8.0 90 100
DE —} % % % —t—
28 74 10.1
1.0 2|0 30 4.0 5/0 6.0 7,0 8.0 9.0 10.0
SDF % % % ——
0.0
TFSM }
20 3/0 5,0 70 10.0
Switch
2.8 7.4 10.1

The switch block must receive control to produce data
3 je TESL

8/33



Modeling Time and Control
in the Power Window

Step — f f H f f f —— f H
05 10 20 30 40 50 60 70 80 90 100
DE — f f H f f f —— f H
28 74 10.1
10 20 30 40 50 60 70 80 90 100
| | | | | | | | | |
SDF i i i i i i i i i i
0.0 40 60 100 140 20.0
TFSM }
AA
sle 148 2.2
20 Jalo 5l 7lo 100
Switch
28 7.4 10.1

DE semantics creates control for the TFSM when it receives inputs

TESL

8/33



Modeling Time and Control
in the Power Window

The TFSM controller model has timed transitions <« =+ <&

8/33



Modeling Time and Control
in the Power Window

Step — f f H f f f —— f H
0.5 1.0 2.0 2|5 3.0 3|5 4.0 5.0 6.0 7.0 8.0 9.0 10.0
DE — f F—+ f f f —— f #
28 7.4 10.1
\
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v X
| | | | | | | | | | [N
SDF t t t t t t t t t t I+
[—y
!
0.0 4.0 50 6.0 7|0 10.0 14.0 20.0
TFSM —f S % - o~
5.6 14.8 20.2
2.0 3.0 5.0 7.0 10.0
Switch —+ f — f
28 7.4 10.1

TESL 8/33



Modeling Time and Control
in the Power Window

Step

DE

SDF

TFSM

Switch

?2 29292 2 2 ? 2 2 2 ? ”
| | | /] | | | | - | | H
T T T LI T T T T T T T T
-0.5 1.0 20 25 3.0 35 4.0 5.0 6.0 7.0 8.0 9.0 10.0
| | | | |1 | | | | - | | Il
T T T LI T T T T T T T T
2.8 7.4 10.1
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Il Il Il Il Il Il Il Il Il Il
T T T T T T T T T T
0.0 4.0 50 6.0 7.0 10.0 14.0 20.0
Il Il 1 Il Il - H
T T LI T T T T
5.6 14.8 20.2
2.0 3.0 5.0 7.0 10.0
Il |1 Il - H
T T T T T
2.8 7.4 10.1

TESL

8/33



Modeling Time and Control
in the Power Window

? 2 ?2 2922 2 2 2 ? ?2 2 ? 2 ”
Step — f -t f f L f H

-0.5 1.0 2.0 25 3.0 35 4.0 5.0 6.0 7.0 8.0 9.0 10.0

DE — f -t f f —— f f
2.8 7.4 10.1

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

SDF % % % % % % % % % %

0.0 40 50 6.0 7.0 10.0 14.0 20.0

TFSM — ——+— f — f
5.6 14.8 20.2

2.0 3.0 5.0 7.0 10.0

Switch f H f — f
2.8 7.4 10.1

When do t

hese events occur? Drivi
T

TESL

ng clocks drivethe simulation.

8/33



Agenda

@ TEsL



TESL

Goal
@ Model relations between control and time in heterogeneous models

@ Allow for deterministic simulations
@ Allow the synchronization of the simulation with the environment

Sources

@ Synchronous languages (Esterel) for causality and preemption
@ Tagged Signal Model and MARTE UML profile for the notions of time
@ CCSL for the declarative syntax

@ Events are modeled by clocks

@ Event occurrences are modeled by ticks

@ A tick has a tag which belongs to the domain of its clock

@ A behavior is a series of instants which contain simultaneous ticks

Frédéric Boulanger TESL

10/33



TESL static elements

Clocks
@ T-clock: clock with time domain T
@ Time domain T = ordered set with +, —, X, / operations, 0 and 1
@ Examples of time domains: {x},Z,D,Q,R,R x N

Implications
@ a implies b each instant with a tick on a also has a tick on b
@ Conditional implication: implication guarded by a Mealy machine

Time delays
@ a time delayed by d on m implies b d>0

Tag relations

d
@ dom(a) == dom(b) link the time scales of aand b
r

Frédéric Boulanger TESL 11/33



TESL dynamic elements

Creation of ticks
@ Sporadic clock: a clock “preloaded” with ticks at given tags
@ Periodic clock: a clock with an initial tick and a time delay on itself

Building behaviors
At any instant /;
teate lj,aimplies b
It eb,t' €,

(causality)

teatel,t ebt="t
el

(synchronization)

Witht=t < ¢ or

Frédéric Boulanger TESL 12/33



Example: implication

Specification

Z—-clock a periodic 1
Z-clock s sporadic 2, 6
Z—-clock e sporadic 4
unit-clock b

a sustained from s to e implies Db
@tagref a (@maxstep 10 @output tikz standalone

TESL 13/33



Example: implication

Specification

Z-clock a periodic 1
Z-clock s sporadic 2, 6
Z-clock e sporadic 4
unit-clock b

a sustained from s to e implies b
@tagref a (@maxstep 10 @output tikz standalone

a | | | | | | | | | |

S
e |
b

Frédéric Boulanger TESL 13/33



Example: implication

Specification

Z-clock a periodic 1
Z-clock s sporadic 2, 6
Z-clock e sporadic 4
unit-clock b

a sustained from s to e implies b
@tagref a (@maxstep 10 @output tikz standalone

a | | | | | | | | | |

S
e 14
b

Frédéric Boulanger TESL 13/33



Example: implication

Specification
Z—-clock a periodic 1
Z-clock s sporadic 2, 6 tag relation s =

Z—-clock e sporadic 4 tag relation e =
unit-clock b

||
(U]

a sustained from s to e implies Db
@tagref a (@maxstep 10 @output tikz standalone

TESL 13/33



Example: implication

Specification

Z-clock a periodic 1
Z-clock s sporadic 2, 6 tag relation s =
Z-clock e sporadic 4 tag relation e =
unit-clock b

(|
0o

a sustained from s to e implies b
@tagref a (@maxstep 10 @output tikz standalone

a | | | | | | | | | |

S
e I
b

Frédéric Boulanger TESL 13/33



Example: Time delayed implication

Specification

O-clock a sporadic 2, 4
QO-clock m tag relation m = a
unit-clock b

a time delayed by 2.5 on m implies b
@tagref a (@output tikz standalone

TESL 14/33



Example: Time delayed implication

Specification

O-clock a sporadic 2, 4
QO-clock m tag relation m = a
unit-clock b

a time delayed by 2.5 on m implies b
@Qtagref a (@output tikz standalone

a | |
m

25
b 4 25 i

ric Boulanger TESL

14/33



Example: Time delayed implication

Specification

O-clock a sporadic 2, 4

0-clock m tag relation

unit-clock b

a time delayed by 2.5 on m implies b
@tagref a (@output tikz standalone

TESL 14/33



Example: Time delayed implication

Specification

O-clock a sporadic 2, 4

0-clock m tag relation

unit-clock b

a time delayed by 2.5 on m implies b
@tagref a (@output tikz standalone

a | |
m 5 7.5 9 115
b 25 25
A 1

Frédéric Boulanger TESL

14/33



More about tag relations

Tag relations are pairs of non-decreasing functions (d, r) with:
@ dorod=d
@ rodor=r

But they are not necessarily bijections nor the reverse of each other.

r

\

This condition allows a clock to be “finer” than another clock without forcing
different tags to be simultaneous on a clock.

Frédéric Boulanger TESL

15/33



More about tag relations

Specification
Z-clock a sporadic 2, 4, 5
Z-clock Db tag relation a = 2+xb + 0

a implies b

@tagref b (@output tikz standalone

d:t—2t

= 2xb + 0 =
? {r:t»—>t+2

TESL

16/33



More about tag relations

Specification

Z-clock a sporadic 2, 4, 5
Z-clock Db tag relation a = 2+xb + 0
a implies b

@tagref b (@output tikz standalone

b 4 0 d:t— 2t
e- rotes 2

a 12 14&5

b | !

Frédéric Boulanger TESL

16/33



More about tag relations

Specification
Z-clock a sporadic 2, 4, 5
Z-clock Db tag relation a = 2+xb + 0

a implies b
@tagref a | @output tikz standalone

d:t—2t

= 2xb + 0
@ ! :{r:tr—>t+2

TESL

16/33



More about tag relations

Specification

Z-clock a sporadic 2, 4, 5
Z—-clock b tag relation a = 2«b + 0
a implies b

@output tikz standalone

d:t—2t
r:t—t=+2

a—2*b+0=>{

a | | |
b I 12 12

! ! !

2 4 5

Frédéric Boulanger TESL 16/33



Agenda

e Solving TESL specifications



Solving TESL specifications

@ Build a series of instants (/;)

@ Each instant contains simultaneous ticks
according to the causality and synchronization rules

@ All ticks must be assigned to an instant
@ Foranyclocke, tec,tel,t ec,t €lj>i=t>t

Frédéric Boulanger TESL 18/33



Solving TESL specifications

@ Build a series of instants (/;)

@ Each instant contains simultaneous ticks
according to the causality and synchronization rules

@ All ticks must be assigned to an instant
@ Foranyclocke, tec,tel,t ec,t €lj>i=t>t

Building an instant
@ A tick can be forced into an instant (input)
@ A tick on a greedy clock is put into an instant as soon as possible
@ A tick on a non-greedy clock is put into an instant only when needed

@ The causality and synchronization rules are applied
until a fixed-point is reached (it contains at most one tick per clock)

Frédéric Boulanger TESL 18/33



Solving TESL specifications

1
a [ pRO
x3—1 >im lie
Initial % p//S
clocks X241
3 L

Frédéric Boulanger TESL 19/33



Solving TESL specifications

1
a u AT~
L x3—1 ;‘>impli§s
Step1 b ] %241
3
c

Applying the implication relation

TESL

Frédéric Boulanger

19/33



Solving TESL specifications

1
a [ i
2 x3—1 ;‘>implie/,s
Step2 b n /X241
3
Cc

Using the tag relation between a and b

Frédéric Boulanger TESL 19/33



Solving TESL specifications

1
a ] pRO
x3—1" >im lies
Final 2 y) P
clocks X2t
3 o
Cc | |

Using the tag relation between b and ¢

Frédéric Boulanger TESL 19/33



Dealing with time islands

A time island is a connected subgraph of the tag relation graph.
Merging a floating tick with a tagged tick
can be done independently in each time island.

[

1

|
Initial :b

clocks '—-

Ic

|

|

|

|

|

Frédéric Boulanger

3
ﬁ . .
5 x2+1 L>|mpl|es
7 > implies
5 ><3—2?>implies
¥
TESL

20/383



Dealing with time islands

A time island is a connected subgraph of the tag relation graph.
Merging a floating tick with a tagged tick
can be done independently in each time island.

[

After |
RTI 'b
implications '
c

Frédéric Boulanger

1 3
- 7
1 5 x2+1 (‘t> implies
]
L 7 > implies
_ A
L 5 x3—22> implies
]

TESL

20/383



Dealing with time islands

A time island is a connected subgraph of the tag relation graph.
Merging a floating tick with a tagged tick
can be done independently in each time island.

[ |

Using L

; 'b!

tag relations '
c|

Frédéric Boulanger

1 5 3
.\ Y N P
1 R 5 N x2+1 L>implies
. ) v -
3 7 . .
1 7 13 implies
[ ] y X ”
e 1 A\ . .

n S5 xX3—2. >|mpl|es
u T & :

3

TESL

20/383



Dealing with time islands

A time island is a connected subgraph of the tag relation graph.
Merging a floating tick with a tagged tick
can be done independently in each time island.

[
After }b
merging '~
c

Frédéric Boulanger

1 3
- A
3 5 x2+1 (‘t> implies
]
7 > implies
_ A
3 5 x3—22> implies
]

TESL

20/383



Greedy clocks

Assuming clocks ¢ and d are greedy,
we should put ticks 7 and 5 in an instant as soon as possible

. 1 3

2 —m y
" o ><2—|—1'>im lies
Initial b ° y) P
clocks ‘-

- 7

C ”

| | 7

o X3 —2.

o ° ~

Frédéric Boulanger TESL

21/33



Greedy clocks

Assuming clocks ¢ and d are greedy,
we should put ticks 7 and 5 in an instant as soon as possible

. 1 3

'a| ] y

L x2+41" )implies

After :b: J.- 5 + i> P
implications '

- 7

C ”

| | 7

o X3 —2.

" ° ~

Frédéric Boulanger TESL 21/33




Greedy clocks

Assuming clocks ¢ and d are greedy,

we should put ticks 7 and 5 in an instant as soon as possible

[ |

Using L

- 'b!

tag relations '
c!

Frédéric Boulanger

A
X241 > implies
¥

1 > 3
LN x N
\ |
1 ~_ 5 .
] h ¥
3 7
[T
g X A
1/ ’ 5 ’ X3 —2 ?
Y v
3
TESL

21/33



Greedy clocks

Assuming clocks ¢ and d are greedy,
we should put ticks 7 and 5 in an instant as soon as possible

_ - 1 3
a [
After L N
merging L 3 5 x2+1 )implies
. 'b! ] Y
with gl
greedycandd -- 7
1 C [ ] -
| | F
L x3—2
g 5 .

Frédéric Boulanger TESL 21/33



Agenda

Q
12
o
@ Running simulations
5
6



TESL for running simulations

Model time

@ Modeling causality between events in a model
@ Modeling time delays in a model
@ Modeling relations between time scales in a model

Frédéric Boulanger TESL 23/33



TESL for running simulations

Model time

@ Modeling causality between events in a model

@ Modeling time delays in a model
@ Modeling relations between time scales in a model

“Real” time

@ Mapping external events to model events

@ Mapping durations from external time to model time

Frédéric Boulanger TESL 23/33



TESL for running simulations

Model time

@ Modeling causality between events in a model

@ Modeling time delays in a model
@ Modeling relations between time scales in a model

“Real” time

@ Mapping external events to model events

@ Mapping durations from external time to model time

Examples of driving clocks

@ Event feeder clock (ticks each time an external event occurs)

@ Real-time periodic clock (ticks periodically on the system clock)
@ Time synchronizing clock (synchronizes its ticks with system time)
@ AFAP clock (ticks as fast as possible)

Frédéric Boulanger TESL 23/33



TESL for running simulations

For each simulation step

@ Solve the specification with greedy driving clocks

@ Wait for any of the driving clock with a tick in the resulting instant
© Solve the specification with non-greedy driving clocks

@ Compute the simulation step using the resulting instant

© Compute the next specification

Frédéric Boulanger TESL 24/33



TESL for running simulations

For each simulation step

@ Solve the specification with greedy driving clocks

@ Wait for any of the driving clock with a tick in the resulting instant
© Solve the specification with non-greedy driving clocks

@ Compute the simulation step using the resulting instant

© Compute the next specification

Advantages

@ The simulation engine is free from platform specific code

@ The same formalism is used for both model time and real time
@ The mapping between model time and real time is explicit
@ Model-specific synchronization can be added as new driving clocks

Frédéric Boulanger TESL 24/33



Semantic Framework for Timed Coordination Languages

=] F = E £ DA



Runs

TESL specifications describe runs

A run is a sequence of observations of an enumerable set of clocks K

Each observation is an instant at which a clock:
@ may tick or not

@ has a time stamp

p:N—->K— (BxT)

Frédéric Boulanger

TESL

26/33



Runs

TESL specifications describe runs

A run is a sequence of observations of an enumerable set of clocks K

Each observation is an instant at which a clock:
@ may tick or not

@ has a time stamp

p:N—->K— (BxT)
Time cannot flow backwards:

i>j==time(p i c) > time(p j c)

Frédéric Boulanger

TESL 26/33



Denotational Semantics

[[01 sporadic T on Cg]] TESL

= {p|IneN. ticks(p n G1) Atime(p n Cp) = T}

[[01 implies Cz]] TESL

% {p | ¥neN. ticks(p n Cy) = ticks(p n Co)}

[[time relation (Cy, C,) € R]]
def

TESL
{p | VneN. (time(p n Cy),time(p n C)) € R}

[[Cmaster time delayed by 67T on Cpess implies Cgpaye

def {p | ¥n € N. ticks(p N Cmaster) =

Vm > n. elapsed(p, Cmeas, N, 6T, m) = ticks(p m Cgjave) }

]]TESL

Frédéric Boulanger TESL 27/33



Denotational Semantics

[[01 sporadic T on Cg]] TESL

= {p|IneN. ticks(p n G1) Atime(p n Cp) = T}

[[01 implies Cz]] TESL

% {p | ¥neN. ticks(p n Cy) = ticks(p n Co)}

[[time relation (Cy, C,) € R]]
def

TESL
{p | VneN. (time(p n Cy),time(p n C)) € R}

[[Cmaster time delayed by 67T on Cpess implies Cgpaye

def {p | ¥n € N. ticks(p N Cmaster) =

Vm > n. elapsed(p, Cmeas, N, 6T, m) = ticks(p m Cgjave) }

]]TESL

Reasonning on runs, proof of invariance by stuttering.

Frédéric Boulanger TESL 27/33



Operational Semantics

Specification = potential future
Action = make a decision in the present
State = decisions that have already been made

Frédéric Boulanger TESL

28/33



Operational Semantics

Specification = potential future

Action = make a decision in the present

State = decisions that have already been made
Context: M= Voo

I is the past up to instant n

WV is the remaining constraint on instant n
® is the constraint on the future

Frédéric Boulanger TESL

28/33



Operational Semantics

Specification = potential future

Action = make a decision in the present

State = decisions that have already been made
Context: M= Voo

I is the past up to instant n

WV is the remaining constraint on instant n
® is the constraint on the future

Primitive Constraints in [

[C 1] i & {p | ticks(p nC)}
[C 1] orim &« {p | —ticks(p n C)}
[C Un x] i oo {p | time(p n C) = x}

[(val$', val$?) € A] - o {p | (time(p ny Cy),time(p nz C)) € R}

Frédéric Boulanger TESL 28/33



Operational Rules

Introduction rule

Frédéric Boulanger TESL 29/33



Operational Rules

Introduction rule

Elimination rules

I =,V A (Cy sporadic T on Gy)p>® (sporadic — ony)
—elEn Vb A (Cy sporadic 7 on Cy)

=,V A (Cy sporadic Ton Co)> @ (sporadic — ony)
=6 TU{Ci 17, C2 In T} En VO

N=nVA(Ch implies Co)> @ (impliesg)
—e FU{C1 1)(,,} EaV>d A (Cy implies Cp)

=,V A (Ch implies Go)>® (impliesgy)

—e TU{Ci 1r,C2tn} En Vb ® A (C implies Cp)

Frédéric Boulanger TESL 29/33



Operational Semantics

@ Local termination (W eventually becomes empty)
@ Progress (We can reach any instant nin a run)

@ Soundness and completeness with respect to the denotational semantics

[2 o V>2] config — [¥] s

Frédéric Boulanger TESL 30/33


https://github.com/heron-solver/heron

Operational Semantics

Properties

@ Local termination (W eventually becomes empty)
@ Progress (We can reach any instant nin a run)

@ Soundness and completeness with respect to the denotational semantics

[2 o V>2] config — [¥] s

Uses

@ Monitoring of heterogeneous systems

@ Online testing

More efficient implementation in SML: Heron

Frédéric Boulanger TESL 30/33


https://github.com/heron-solver/heron

Agenda

Conclusion



Conclusion

TESL

@ Synchronous language with tags and durations

@ Deterministic, with constructive semantics

Frédéric Boulanger TESL 32/33


https://wdi.centralesupelec.fr/software/TESL/
https://github.com/heron-solver/TESL-Theory
https://github.com/heron-solver/heron

Conclusion

TESL

@ Synchronous language with tags and durations

@ Deterministic, with constructive semantics

A Timed Coordination Language

@ Usable for simulation (Eclipse plug-in + ModHel’X)

@ With a well defined semantics (Isabelle/HOL theory)
@ Usable for monitoring and testing (Heron implementation)

Frédéric Boulanger TESL 32/33


https://wdi.centralesupelec.fr/software/TESL/
https://github.com/heron-solver/TESL-Theory
https://github.com/heron-solver/heron

Conclusion

TESL

@ Synchronous language with tags and durations

@ Deterministic, with constructive semantics

A Timed Coordination Language

@ Usable for simulation (Eclipse plug-in + ModHel’X)

@ With a well defined semantics (Isabelle/HOL theory)
@ Usable for monitoring and testing (Heron implementation)

Execution of Heterogeneous Models

@ Modeling causality for data and control, modeling time delays

@ Modeling synchronization between heterogeneous time scales

Frédéric Boulanger TESL 32/33


https://wdi.centralesupelec.fr/software/TESL/
https://github.com/heron-solver/TESL-Theory
https://github.com/heron-solver/heron

Conclusion
TESL

@ Synchronous language with tags and durations

@ Deterministic, with constructive semantics

A Timed Coordination Language
@ Usable for simulation (Eclipse plug-in + ModHel’X)
@ With a well defined semantics (Isabelle/HOL theory)
@ Usable for monitoring and testing (Heron implementation)

Execution of Heterogeneous Models
@ Modeling causality for data and control, modeling time delays
@ Modeling synchronization between heterogeneous time scales

A Framework for Coordination Languages
@ Past/Present/Future pattern

@ Infrastructure for proving soundness and completeness

Frédéric Boulanger TESL



https://wdi.centralesupelec.fr/software/TESL/
https://github.com/heron-solver/TESL-Theory
https://github.com/heron-solver/heron

Thank You

Frédéric Boulanger TESL 33/33



	Context: execution of heterogeneous models
	TESL
	Solving TESL specifications
	Running simulations
	Semantic Framework for Timed Coordination Languages
	Conclusion

